Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation.
نویسندگان
چکیده
Autoimmune diseases, such as psoriasis and arthritis, show a patchy distribution of inflammation despite systemic dysregulation of adaptive immunity. Thus, additional tissue-derived signals, such as danger-associated molecular patterns (DAMPs), are indispensable for manifestation of local inflammation. S100A8/S100A9 complexes are the most abundant DAMPs in many autoimmune diseases. However, regulatory mechanisms locally restricting DAMP activities are barely understood. We now unravel for the first time, to our knowledge, a mechanism of autoinhibition in mice and humans restricting S100-DAMP activity to local sites of inflammation. Combining protease degradation, pull-down assays, mass spectrometry, and targeted mutations, we identified specific peptide sequences within the second calcium-binding EF-hands triggering TLR4/MD2-dependent inflammation. These binding sites are free when S100A8/S100A9 heterodimers are released at sites of inflammation. Subsequently, S100A8/S100A9 activities are locally restricted by calcium-induced (S100A8/S100A9)2 tetramer formation hiding the TLR4/MD2-binding site within the tetramer interphase, thus preventing undesirable systemic effects. Loss of this autoinhibitory mechanism in vivo results in TNF-α-driven fatal inflammation, as shown by lack of tetramer formation in crossing S100A9-/- mice with 2 independent TNF-α-transgene mouse strains. Since S100A8/S100A9 is the most abundant DAMP in many inflammatory diseases, specifically blocking the TLR4-binding site of active S100 dimers may represent a promising approach for local suppression of inflammatory diseases, avoiding systemic side effects.
منابع مشابه
Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity
Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of infla...
متن کاملDevelopment and evaluation of a non-peptidic ligand for the molecular imaging of inflammatory processes using S100A9 (MRP14) as a novel target.
The establishment of novel molecular imaging tools to monitor the local activity of inflammation remains an interdisciplinary challenge. Our target, the alarmin S100A9, one subunit of the heterodimer S100A8/S100A9 (calprotectin), is locally secreted in high concentrations from immigrated and activated phagocytes at local sites of inflammation. Calprotectin is already a well established serum bi...
متن کاملHuman S100A9 Protein Is Stabilized by Inflammatory Stimuli via the Formation of Proteolytically-Resistant Homodimers
S100A8 and S100A9 are Ca(2+)-binding proteins that are associated with acute and chronic inflammation and cancer. They form predominantly heterodimers even if there are data supporting homodimer formation. We investigated the stability of the heterodimer in myeloid and S100A8/S100A9 over-expressing COS cells. In both cases, S100A8 and S100A9 proteins were not completely degraded even 48 hrs aft...
متن کاملExpression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator
BACKGROUND Lung disease in cystic fibrosis (CF) patients is dominated by chronic inflammation with an early and inappropriate influx of neutrophils causing airway destruction. Congenic C57BL/6 CF mice develop lung inflammatory disease similar to that of patients. In contrast, lungs of congenic BALB/c CF mice remain unaffected. The basis of the neutrophil influx to the airways of CF patients and...
متن کاملSubstitution of methionine 63 or 83 in S100A9 and cysteine 42 in S100A8 abrogate the antifungal activities of S100A8/A9: potential role for oxidative regulation.
S100A8 and S100A9 and their heterocomplex calprotectin (S100A8/A9) are abundant cytosolic constituents in human neutrophils previously shown to possess antifungal activity. This study was designed to investigate mechanisms involved in the modulation of the antifungal properties of S100A8/A9. S100A8, S100A9 and site-directed mutants of both proteins were tested for their antifungal effect agains...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره شماره
صفحات -
تاریخ انتشار 2018